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Spatial networks have recently attracted great interest in various fields of research. While the traditional
network-theoretic viewpoint is commonly restricted to their topological characteristics (often disregarding
existing spatial constraints), this work takes a geometric perspective, which considers vertices and edges
as objects in a metric space and quantifies the corresponding spatial distribution and alignment. For this
purpose, we introduce the concept of edge anisotropy and define a class of measures characterizing the spatial
directedness of connections. Specifically, we demonstrate that the local anisotropy of edges incident to a
given vertex provides useful information about the local geometry of geophysical flows based on networks
constructed from spatio-temporal data, which is complementary to topological characteristics of the same
flow networks. Taken both structural and geometric viewpoints together can thus assist the identification of
underlying flow structures from observations of scalar variables.

PACS numbers: 89.75.Hc, 05.45.-a, 92.10.ak
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Complex networks have recently attracted a ris-
ing interest for studying dynamical patterns in
geophysical flows like in the atmosphere and
ocean. For this purpose, two distinct approaches
have been proposed based on either (i) cor-
relations between values of a certain variable
measured at different parts of the flow domain
(correlation-based flow networks) or (ii) transi-
tion probabilities of passively advected tracers
between different parts of the fluid domain (La-
grangian flow networks). So far, investigations
on both types of flow networks have mostly ad-
dressed classical topological network characteris-
tics, disregarding the fact that such networks are
naturally embedded in some physical space and,
hence, have intrinsic restrictions to their struc-
tural organization. In this paper, we introduce
a novel concept to obtain a complementary geo-

a)The first two authors contributed equally to this manuscript.

metric characterization of the local network pat-
terns based on the anisotropy of edge orienta-
tions. For two prototypical model systems of dif-
ferent complexity, we demonstrate that the geo-
metric characterization of correlation-based flow
networks derived from scalar observables can ac-
tually provide additional and useful information
contributing to the identification of the under-
lying flow patterns which are often not directly
accessible. In this spirit, the proposed approach
provides a prospective diagnostic tool for geo-
physical as well as technological flows.

I. INTRODUCTION

During the last years, the application of concepts of
complex network analysis has reached a variety of scien-
tific disciplines1–4. In a growing number of studies, the
analyzed networks have been embedded in some physi-
cal space5, which implies that their vertices take well-

ar
X

iv
:1

60
4.

03
10

0v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

1 
A

pr
 2

01
6



2

defined positions and edges describe physical connec-
tions (or, more generally, interdependencies) within this
space. Examples for such spatial networks can be found
in diverse fields such as infrastructures (e.g., road net-
works, power grids, etc.)6–8, neuronal (brain) networks9,
or network representations of the dynamical similarity
between climate variations observed at distant points on
the globe commonly referred to as (functional) climate
networks10–16.

Due to their embedding in some metric space, spatial
networks are not completely described by their topologi-
cal characteristics. By contrast, the geometric structure
of these systems often needs to be taken into account as
well17–20. The latter aspect relates to an entirely different
class of spatial network characteristics8. At the vertex
level, the spatial heterogeneity of vertex positions can be
quantified by their local density. Regarding the edges,
the spatial vertex density and connectivity pattern re-
sult in a distinct edge length distribution8,21. In addition
to the latter property, this work proposes characterizing
the heterogeneity of the spatial orientations of all edges
associated with a given vertex as a complementary as-
pect. For this purpose, we introduce the concept of edge
anisotropy as a geometric means to quantitatively de-
scribe this feature. In the field of road network analysis,
a conceptually related approach, the orientation or trend
entropy, has been proposed recently, which also charac-
terizes the heterogeneity of road orientations in physical
space22–24. Here, we take a more formal approach by de-
scribing the anisotropy of edges at both, vertex level and
global network scale.

In this work, we explore the potentials of the uti-
lization of edge anisotropy in combination with estab-
lished topological network characteristics for unveiling
the spatial connectivity structure underlying geophysi-
cal flow patterns. Specifically, we apply this new con-
cept to characterize the local spatial organization of two-
dimensional flow systems using spatially embedded func-
tional network representations based on the linear corre-
lations among fields of scalar-valued time series. As illus-
trative examples, we consider two spatio-temporally dis-
cretized flow systems representing (i) advection-diffusion
dynamics of temperature in a simple meandering flow
and (ii) nutrient concentrations in an advection-reaction-
diffusion system of ocean currents in the wake of an
island. The thus obtained correlation-based flow net-
works25 (as well as similar approaches based on La-
grangian dynamics26,27) have numerous potential appli-
cations in the field of atmospheric or oceanic flows. Note
that the term flow network is sometimes also used as a
synonym for transportation networks in technological ap-
plications like power grids. In contrast to that, in this
work we exclusively consider the aspect of network rep-
resentations of flows in physical space as exemplified by
geophysical flow patterns or, in a similar way, flows in
the phase space of dynamical systems.

The remainder of this paper is organized as follows:
Section II introduces new geometric network measures

characterizing the anisotropy of edge orientations in
physical space. In Sections III and IV, we discuss the re-
lationship between the topological and geometric charac-
teristics of the flow networks for the two aforementioned
prototypical problems constructed in different ways. We
compare the spatial patterns of several classical (topolog-
ical) vertex-based network characteristics and local edge
anisotropy in order to demonstrate that the latter adds a
new aspect to the network characterization. Our main re-
sults are summarized and further discussed in Section V.

II. ANISOTROPY IN SPATIAL NETWORKS

A. Preliminaries

Consider a network with a vertex set V and an edge set
E ⊆ V ×V , where N = |V | denotes the overall number of
vertices. The connectivity pattern of this network is de-
scribed by its (unweighted) adjacency matrix A = (amn)
with elements

amn =

{
1, iff {m,n} ∈ E
0, else,

(1)

where {m,n} denotes an edge from vertex m to vertex
n. The degree km of vertex m, i.e., the number of edges
adjacent to this vertex, is then given by summing up all

entries in the m-th row of A, km =
∑N
n=1 amn.

Let us now suppose that the vertices are associ-
ated with well-defined Cartesian coordinates ~xm =

(x
(1)
m , . . . , x

(d)
m ) in a d-dimensional Euclidean space. Here,

the coordinates are provided with respect to an arbitrar-
ily chosen origin. For a given vertex at ~xm, each ad-
jacent edge {m,n} or {n,m} connecting m (in outward
or inward direction, respectively) with another vertex n
located at ~xn can be fully characterized by its length
lmn = ‖~xn−~xm‖ and its spatial orientation described by
the unit vector ~emn = l−1mn(~xn − ~xm).

B. Local anisotropy

The local anisotropy of edge orientations (or, for short,
local (edge) anisotropy) Rm is a geometric network mea-
sure which characterizes the heterogeneity of orientations
of all edges adjacent to a given vertex and, hence, the
spatial directedness of this vertex’ connectivity. We em-
phasize that this aspect is potentially relevant for trans-
port and distribution networks, where it is commonly
advantageous to locate the sources of material flows (lo-
gistic hubs) in the center of the area to be served rather
than at its periphery to minimize transportation costs28.
This idea calls for a generally high degree of isotropy of
the transportation routes at the distributor node, which
should be reflected by a low value of our anisotropy mea-
sure.

For defining the local anisotropy of a given vertex m
in an unweighted and undirected (amn = anm ∀m,n =
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FIG. 1. Schematic definition of the (planar) edge angle ϕmn

between two vertices m and m with given two-dimensional

Cartesian coordinates x
(1,2)
m , x

(1,2)
n , which are connected by

an undirected edge (as common for the correlation-based flow
networks considered later in this work). Without loss of gen-

erality, x(1) is used here as the axis of reference for defining
ϕmn for all edges {m,n}.

1, . . . , N) two-dimensional spatial network, we consider
the Rayleigh measure computed from the orientations
(measured in terms of the unit vectors ~emn) of all edges
adjacent to m,

Rm =
1

km

∥∥∥∥∥
N∑
n=1

amn~emn

∥∥∥∥∥ ∈ [0, 1]. (2)

Practically, Rm projects the vectors ~emn describing the
spatial orientations of all existing edges adjacent to ver-
tex m onto the d-dimensional unit sphere, thereby taking
their spatial orientation (but not their length) into ac-
count, and calculates the modulus of the vector sum of
all corresponding unit vectors. The normalization by de-
gree km ensures Rm ∈ [0, 1] for an angular distribution
between maximally unfocused (isotropic, Rm = 0) and
maximally focused (anisotropic, Rm = 1) edge directions.

In order to illustrate this concept, let us consider the
special case of d = 2, providing a simplified model of
geographical space by neglecting curvature due to the
approximately spherical shape of the Earth’s surface. In
this setting, we can assign a Euclidean angle ϕmn with re-
spect to an arbitrary reference axis (here, we use the x(1)

axis without loss of generality) by setting (cf. Fig. 1)29

ϕmn = arctan

(
x
(2)
n − x(2)m
x
(1)
n − x(1)m

)
. (3)

This corresponds to replacing the former Cartesian coor-
dinates by local polar coordinates centered at ~xm, yield-
ing

~xn − ~xm = lmn

(
cosϕmn
sinϕmn

)
, (4)

In this case, we can rewrite Eq. (2) as

Rm =
1

km

∣∣∣∣∣
N∑
n=1

amne
iϕmn

∣∣∣∣∣ . (5)

A generalization to weighted networks is easily ob-
tained by replacing the binary adjacency matrix A by
the edge weight matrix W = (wmn) (wmn ∈ R+ ∀m,n).
In this case, a proper normalization factor is given by

the associated vertex strength sm =
∑N
n=1 wmn replac-

ing km, so that

Rm =
1

sm

∥∥∥∥∥
N∑
n=1

wmn~emn

∥∥∥∥∥ ∈ [0, 1]. (6)

A corresponding definition for directed yet unweighted
networks is based on replacing km by the in- and out-
degrees kinm , koutm and taking the sum either over incoming
or outgoing edges, yielding the in- and out-anisotropies,
respectively,

Rinm =
1

kinm

∥∥∥∥∥
N∑
n=1

anm~emn

∥∥∥∥∥ with kinm =
∑
n

anm, (7)

Routm =
1

koutm

∥∥∥∥∥
N∑
n=1

amn~emn

∥∥∥∥∥ with koutm =
∑
n

amn. (8)

As for the undirected case, the generalization to weighted
networks is obtained by replacing amn by wmn and the
in- and out-degrees by the in- and out-strengths sinm =∑
n wnm and soutm =

∑
n wmn, respectively.

C. Related measures

The proposed concept of anisotropy of edge orienta-
tions has several possible extensions as well as linkages to
related characteristics. Although the examples discussed
in this paper will focus exclusively on the local anisotropy
in networks characterizing spatial flow patterns, we are
confident that some of these extensions are of potential
interest for studying general spatial networks. In the fol-
lowing, we will briefly discuss some of these aspects.

At the local (vertex) scale, anisotropy can be charac-
terized not just by Rm, but also a variety of other mea-
sures. For d = 2, one immediately recognizes the formal
analogy between Eq. (5) and the mean resultant length
commonly used for quantifying the degree of phase syn-
chronization between two mutually coupled oscillators in
terms of differences between their respective phase dy-
namics on the unit circle30. Accordingly, corresponding
alternative characteristics serving the same purpose in-
clude the circular standard deviation and Shannon en-
tropy of ϕmn for a given m. In comparison with the
Rayleigh measure, both have certain disadvantages. On
the one hand, the standard deviation is commonly not
normalized. On the other hand, the Shannon entropy can
be normalized, but its estimation relies on some binning
of the interval [−π, π] and can therefore only be properly
performed in case of sufficiently high vertex degrees.

Going to the global network scale, one common ap-
proach is defining scalar network characteristics by tak-
ing some mean value over an associated vertex measure.
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A prominent example for this strategy is the global clus-
tering coefficient defined as the arithmetic mean of the
local clustering coefficients of all vertices in a network31.
In a similar way, one possibility to characterize the edge
anisotropy of the network at a global scale is taking the
mean local anisotropy

R =
1

N

N∑
m=1

Rm. (9)

We note that this definition gives different effective
weight to edges associated with vertices of different de-
grees. To see this, recall that each Rm is defined as a sum
over terms related to different edges adjacent to m, which
contribute to Rm equally with the same weight 1/km (in
the case of unweighted networks, otherwise 1/sm). Thus,
if an edge connects two vertices with low degree, it con-
tributes much stronger to R than edges connecting ver-
tices with high degrees. In order to correct for this effect,
we propose studying the global anisotropy

R =
1∑N

m,n=1 amn

∥∥∥∥∥
N∑

m,n=1

amn~emn

∥∥∥∥∥ (10)

instead, where each edge has the same weight32. Draw-
ing upon the analogy to the network’s clustering proper-
ties, R and R take the roles of the Watts-Strogatz and
Barrat-Weight definitions of the clustering coefficient,
respectively31,33, the latter of which is also referred to
as network transitivity in the literature4.

As for the local measures, it is also possible to replace
the mean resultant length by the circular standard de-
viation or Shannon entropy of edge angles ϕmn in the
definition of global anisotropy properties. While this re-
placement still suffers from the same conceptual problems
as the corresponding vertex characteristics when consid-
ering the mean local properties, a corresponding modifi-
cation of the global anisotropy concept relieves the previ-
ous problem of too small sample sizes (arising especially
in the case of sparse networks). In case of the Shannon
entropy, a corresponding measure (referred to as trend
entropy22–24) has been recently used for the analysis of
street network patterns.

Under general conditions, we emphasize that it can
also be interesting to consider the direction of the vector
sum of all unit vectors characterizing the edges adjacent
to a given vertex,

~em =

∑N
n=1 amn~emn∥∥∥∑N
n=1 amn~emn

∥∥∥ (11)

(which straightforward generalizations for weighted
and/or directed spatial networks) instead of just the
modulus Rm, especially for the purpose of visualization
of flows on a given spatial network. In a similar spirit,
in certain applications the length and orientation of the

resultant vector ~rm =
∑N
n=1 amn ‖~xn − ~xm‖ might be of

interest as well. However, this directional aspect (which
has been recently studied using a conceptually related
measure in the context of regional climate network pre-
sentations to unveil the spatial structures of heavy pre-
cipitation events34) is beyond the scope of this work fo-
cusing on quantitative rather than qualitative network
characterization.

III. EXAMPLE 1: ADVECTION-DIFFUSION DYNAMICS
OF TEMPERATURE IN A STATIONARY FLOW

In the following, we will illustrate how a combina-
tion between classical (topological) network character-
istics and the new concept of local anisotropy can help
gaining additional understanding about the structural or-
ganization of spatially embedded systems. For this pur-
pose, we study flow networks constructed from correla-
tions among fields of scalar observables for two prototyp-
ical flow systems with different levels of structural com-
plexity. Note that these networks do not characterize the
mean state of the flow under study, but the spatial in-
terdependence between fluctuations superimposed to this
baseline flow.

A. Discretized advection-diffusion systems

In order to describe the temperature dynamics in a
fluid moving with a given two-dimensional velocity field
~v(~x) (an extension to three-dimensional flows is possible,
but shall not be further studied hereafter), we consider
the classical advection-diffusion equation (ADE)35

∂T

∂t
= κ∆T − ~v(~x)∇T +Dξ(~x, t) (12)

for an incompressible fluid, where κ is the diffusion coeffi-
cient and D the intensity of noise superimposed to the de-
terministic flow equations. The temperature outside the
considered flow domain is fixed at zero, implying that the
thermal conditions of the medium outside this domain do
not affect those inside. For simplicity, we consider here
dimensionless variables, a time-independent velocity field
and uncorrelated Gaussian white noise with zero mean,
unit variance and no spatial or temporal correlations (i.e.,
〈ξ(~x, t)ξ(~y, t′)〉 = δ(~x − ~y)δ(t − t′)). Furthermore, we do
not take possible effects of temperature variations on the
velocity field ~v(~x) into account, but leave the latter inde-
pendent of temperature.

For constructing a flow network based on the scalar
temperature field T (~x, t), we first consider a spatio-
temporal discretization of Eq. (12) without the stochas-
tic diffusion term, using an Euler scheme and a regular
square lattice with spatial resolution ∆x36. The corre-
sponding discretization parameters ∆x and ∆t are chosen
such to fulfill the Courant-Friedrichs-Lewy conditions37

to ensure the stability of the discretization scheme. Let-
ting i and j denote the grid indices in x- and y-direction,
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respectively, and ~vi,j = (vxi,j , v
y
i,j) being the fluid velocity

at a given grid point, the discretized ADE at time step
t′ takes the form

Ti,j(t
′ + 1) = (1− 4κ)Ti,j(t

′)+

+ (κ− vxi,j/2)Ti+1,j(t
′) + (κ− vyi,j/2)Ti,j+1(t′)+

+ (κ+ vxi,j/2)Ti−1,j(t
′) + (κ+ vyi,j/2)Ti,j−1(t′).

(13)

Due to the considered boundary conditions as described
above, some of the coefficients in Eq. (13) correspond-
ing to vertices at the boundary of the considered spa-
tial domain take zero values. We emphasize that the
employed discretization scheme is intentionally kept very
simple and does not consider the more complex structure
of schemes commonly used in geophysical or technologi-
cal flow dynamics. Specifically, in the present example,
both scalar field (temperature) and vector field (flow ve-
locity) are calculated at the same grid.

Taken together, the dynamics of the discretized scalar

temperature field ~T (t′) = (T1(t′), . . . , TN (t′)) (t′ =
0, . . . , t− 1) under the action of the underlying flow can
be approximated by a linear recursive equation with ad-
ditive noise,

~T (t′ + 1) = P~T (t′) + s~ε(t′), (14)

where P is a matrix approximating the time-evolution
operator of the advection-diffusion process, and ~ε(t′) is
a vector of independent Gaussian random variables of
zero mean and unit variance, uncorrelated at different
time steps. s =

√
D∆t/∆x2 denotes the intensity of the

discretized noise36, which we set to 1 in the following.
Neglecting the stochastic term in this vector autoregres-
sive model equation, we can easily obtain the matrix ele-
ments of P from the coefficients of the discretized ADE in
Eq. (13). In particular, the time-evolution matrix P can
be constructed for each given stationary velocity field. In
this case, P is a time-independent matrix itself. In addi-
tion, Eq. (14) can be extended to incorporate secondary
effects such as an external perturbation in some part of
the domain of interest (see below).

Following the previous considerations, Eq. (14) allows
us to generate a field of time series from an initial tem-

perature field ~T (0), which we assume here to be zero
everywhere without loss of generality since the result-
ing asymptotic dynamics is independent of the initial
conditions20. Specifically, solving Eq. (14) for t time
steps yields a vector moving-average process of order t
describing the temperature dynamics at each grid point
depending on the imposed noise,

~T (t) =

t−1∑
k=0

Pt−1−k~ε(k), (15)

where the advective dynamics is fully encoded in the ma-
trix elements of P.

The latter observation is useful for obtaining an ana-
lytical representation of the covariance matrix Γ between

the temperature evolution at all grid points from the dis-
cretized time-evolution operator. Note that the covari-
ance between two time series with zero mean is generally
defined as the sum over the products of all simultane-
ously observed values of the two time series, i.e., the
scalar product of the two vectors. In a similar spirit,
the covariance matrix taking all grid points into account
is defined as the sum over the respective tensor products
of concurrent temperature values. Due to the imposed
noise, we take the expectation value yielding

Γ =

〈
t∑

t′=0

~T (t′)⊗ ~T (t′)

〉

=

t∑
t′=0

t′−1∑
k=0

t′−1∑
k′=0

〈
Pt′−1−k~ε(k)⊗Pt′−1−k′~ε(k′)

〉
.

(16)

By evaluating the expectation values in the inner sums,
the latter equation can be conveniently reformulated as

Γ =

t∑
t′=0

t′−1∑
k=0

(PPT )t
′−1−k, (17)

which converges if |λmax| ≤ 1 with λmax being the eigen-
value of P with the largest modulus. By normalization
with respect to the diagonal elements of Γ, one easily ob-
tains the associated correlation matrix C. In the latter,
the entry Cmn denotes the lag-zero correlation coefficient
between the time series Tm(t) and Tn(t).

B. Meandering flow model

As a specific example, we consider a stationary ve-
locity field representing a variant of the classical two-
dimensional meandering flow model38–42 (Fig. 2A)

~v(x, y) = v0

(
−∂ψ
∂y

,
∂ψ

∂x

)
(18)

with the velocity magnitude v0 and the stream function

Ψ(x, y) = 1− tanh

[
y − sin 2x

cos(arctan(cos 2x))

]
, (19)

where v0 = 0.2 has been chosen such that the maximum
velocity at all grid points does not exceed 0.5.

For the discretization scheme, we use ∆t = ∆x = 1
and a square lattice of 40× 40 grid points, yielding N =
1, 600 vertices of the flow network. In order to comply
with the Courant-Friedrichs-Lewy criteria κ∆t/(∆x)2 ≤
1 and ∆t ·max~x |~v(~x)| ≤ ∆x, we consider a dimensionless
thermal diffusion coefficient of κ = 0.01. The integration
time of the system was taken as t = 20.

In addition to the unperturbed flow, we consider the
case where some part of the flow domain is affected by
an external perturbation. For example, consider a region
where the fluid has a larger heat capacity or is ”externally
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FIG. 2. (Color online) (A,B) Velocity field of the meandering flow example (colors indicating the velocity modulus prior to
rescaling by the factor v0, arrows the flow direction) without (A) and with (B) a perturbed region (shaded area, see the main
text for further details). In addition, the vertex strengths (C,D) and local anisotropies (E,F) of the associated flow networks
are shown for the unperturbed (C,E) and perturbed case (D,F). Panels (G,H) display the two-dimensional histograms of local
anisotropy and vertex strength (colors indicating the frequency of all combinations between the respective values). Note that
the corresponding axes show the values of both network measures, which is different from panels (A)-(F) where the spatial
positions of vertices are indicated. Notable groups of many vertices with approximately the same strength and anisotropy (see
discussion in the main text) are additionally highlighted by dashed circles.
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heated” (see Fig. 2B). This perturbation is realized by
adding an additional term to the diagonal elements of P,
yielding

P′ = P + H. (20)

Here, H is a diagonal matrix with entries hmm > 0 in ex-
ternally heated regions and hmm = 0 elsewhere. For the
sake of simplicity, we just take uniform hmm = 0.03 for
all grid points m inside the perturbed region highlighted
in Fig. 2B, leaving the detailed exploration of other set-
tings a subject for future work. After a possibly necessary
renormalization to ensure convergence, P′ again serves as
a discretized time-evolution operator of the ADE process
under the considered stationary flow.

C. Flow network construction

The correlation matrix of the discretized ADE system
as derived above can be directly re-interpreted as the
weight matrix of an undirected weighted flow network by
setting

wmn = Cmn − δmn, (21)

where δmn is Kronecker’s delta used for removing the
trivial correlation of each grid point with itself. Here, the
considered grid points represent the vertices of the con-

structed network. Given the dynamics of ~T and the as-
sociated estimate of C based on P, this network directly
represents the linear correlations among the temperature
variations observed at all grid points m = 1, . . . , N .

Before further analysis, it is important to highlight the
practical interpretation of the thus constructed flow net-
work. For the considered homogeneous initial conditions
Tm(0) = 0 ∀m ∈ V in the absence of additional grad-
ual perturbation H, the mean temperature field will be
described by a homogeneous equilibrium. However, the
correlation-based flow networks do not characterize the
corresponding mean state, but the spatial interdepen-
dencies between fluctuations superimposed to this equi-
librium. Both diffusive and advective terms transport
the noisy input signal, implying that the fluctuations at
nearby spatial locations are correlated even in the case
of independent noise. However, the corresponding corre-
lations can be expected to be no simple functions of the
spatial distance between two vertices, but also reflect the
structure of the underlying velocity field. In this spirit,
the correlation-based flow network should contain infor-
mation on both diffusive and advective structures (and,
hence, the considered flow pattern). In the following,
we will examine qualitatively how different flow network
characteristics can be used for inferring the correspond-
ing information.

D. Flow network characteristics

In order to study the spatial connectivity patterns of
the correlation-based flow network, we first consider the
individual vertex strengths sm. For purely advection-
diffusion based systems, it was shown previously25 that
a high degree commonly indicates high velocity. This ob-
servation is further supported by our example (to see this,
compare the high-velocity regions in Fig. 2A,B with the
locations of vertices with high strength in Fig. 2C,D).
However, Fig. 2D additionally reveals that the vertex
strength can also be elevated due to a common trend at
all vertices in a certain area within the discretized scalar
field ~T increasing the correlation coefficients among these
vertices. Similar observations have been made recently
for the degree fields of climate networks constructed from
surface air temperature anomalies in the presence of vol-
canic eruptions or strong El Niño episodes43.

According to the latter result, it is evident that an-
other network measure is necessary to distinguish be-
tween the effects of external heating and high velocity.
As a potential candidate, the local anisotropy of the sys-
tem is shown in Fig. 2E,F. As a prominent feature of the
flow network geometry, we observe that regions with high
fluid velocity are commonly surrounded by areas with el-
evated anisotropy values whenever the local flow pattern
is straight. This feature can be explained by strongly
correlated grid points being aligned with the flow, i.e.,
spatial positions within the flow domain which experi-
ence temporal variations of the local temperature at the
same time due to the advection. As an exception, in
the areas with the highest stationary velocity (and high-
est vertex strength), the local anisotropy is reduced in
comparison with regions slightly apart from the center
of the flow. We relate this to the fact that a high ver-
tex strength sm implies a large number of vertices being
strongly connected, which cannot all be aligned linearly.

In contrast to the areas with high fluid velocity and
straight flow geometry, if the (stationary) flow is fast
but curved (especially at the turning points of the me-
anders), the locally linear geometric alignment of the
most strongly correlated vertices is relieved, resulting in
lower anisotropy values. In fact, we observe the low-
est anisotropy values among all vertices in those regions
where the flow takes a sharp turn. Moreover, the local
anisotropy values are also slightly reduced in regions of
slow flow, where diffusive heat transport has a larger rel-
ative importance in comparison with advective one than
under fast flow conditions. Hence, correlations among
temperature fluctuations can also be relevant in direc-
tions perpendicular to the flow.

Another notable finding is the absence of marked dif-
ferences between the cases without and with external
heating in the area where the perturbation is applied
– with the exception of the boundaries of the perturbed
domain that still deviate from the almost constant back-
ground anisotropy values. Hence, in combination with
the vertex strength, local anisotropy can be used to dis-
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tinguish high velocity areas from regions with common
temperature trends due to external forcing. This result
suggests that anisotropy and related geometric network
properties are potentially useful tools for the analysis of
correlation-based flow networks, but also other spatial
networks like climate networks.

In order to gain further understanding of the com-
plex interplay between vertex strength and anisotropy,
Fig. 2G,H shows scatter plots between both character-
istics for the cases without and with external perturba-
tion. In the unperturbed case (Fig. 2G), we find a large
group of vertices corresponding to the large area of slow
stationary flow, which are characterized by relatively
low strength and medium anisotropy values (dashed cir-
cle). Vertices from the faster flow area (i.e., with larger
strength) show a relatively broad range of anisotropy val-
ues, depending on whether the respective vertices are lo-
cated at a turn (low Rm) or a straight segment of the
flow pattern (high Rm). In the case of the perturbed
flow (Fig. 2H), the network maintains these basic fea-
tures. However, much of the empirical distribution of
vertex strengths is shifted towards lower values, reflect-
ing the fact that the correlations between vertices in the
perturbed region are elevated due to a common trend,
while those of the remaining vertices compensate for this
effect by showing generally lower strengths than in the
unperturbed case (as also shown in Fig. 2C,D). Specif-
ically, the existence of a homogeneously perturbed re-
gion results in a second group of many vertices with
approximately the same strength and anisotropy (right
dashed circle in Fig. 2H), which corresponds to vertices at
grid points with low velocity modulus but external heat-
ing. In turn, the original group of vertices with approxi-
mately the same network characteristics (dashed circle in
Fig. 2G) is shifted towards lower vertex strengths while
maintaining their anisotropy values (left dashed circle
in Fig. 2H). Thus, the considered perturbation promi-
nently influences the distribution of vertex strengths (i.e.,
a topological network measure) while retaining most of
the anisotropy values (i.e., a geometric characteristic).
Future studies should address the question whether sim-
ilar observations also apply to other flow network char-
acteristics.

IV. EXAMPLE 2: NUTRIENT DYNAMICS IN A
COMPLEX ADVECTION-REACTION-DIFFUSION
SYSTEM

The previously discussed example has been character-
ized by a relatively basic flow pattern. In order to demon-
strate that the concept of edge anisotropy is also useful
for the characterization of more complex flows, in the
following we consider a paradigmatic model of a marine
current system originally motivated by particle trans-
port in the wake of the Canary Islands. Here, the dy-
namics of interest is described by an advection-reaction-
diffusion (ARD) system, which was already investigated
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FIG. 3. (Color online) Exemplary snapshots of nutrient trans-
port dynamics. The six panels (A-F) depict successive states
of nutrient concentrations (colors, arbitrary units) during one
period (TC = 10 time steps) of the periodic time evolution of
the flow. Time is measured in units of TC . The island and the
upwelling region are represented by the circle and rectangle,
respectively.

in depth in previous studies44,45. In the considered set-
ting, a biological model of a marine food web containing
available nutrients and different plankton populations is
driven by the mesoscale hydrodynamical flow structures
in the region. The velocity field is prescribed by a time-
periodic stream function and consists of a main back-
ground flow, an upwelling region with an Ekman drift
and a von Kármán vortex street. The vortices emerge in
the wake of the island due to its role as a major obstacle
to the flow and display a mutual phase difference of half
the period of the stream function. Unlike in the simple
example in Section III, the nutrient concentrations are
modeled on a regular Eulerian grid, while the flow dy-
namics is obtained by means of a Lagrangian approach.

Figure 3 displays the nutrient concentrations (replac-
ing the temperature field of the previous example as a
scalar observable) for different phases during one full pe-
riod of the flow. The vortices in the wake of the is-
land periodically detach with alternating signs of rota-
tion and then travel along the main flow. It was shown45

that, depending on the vortex strength, the vortex pat-
terns can either prohibit or permit transport of nutri-
ents and plankton across the wake. In this study, we
restrict our attention to the simulated nutrient time se-
ries x̂m(t)(t = 1, .., T ;m = 1, .., N) as tracers that could
be used for the reconstruction of the (possibly unknown)
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FIG. 4. (Color online) Spatial patterns of the mean Pearson
correlation (Eq. 23) of each grid point in the complex flow pat-

tern with all other grid points, Cm = N−1 ∑N
n=1 Cmn. The

three marked regions correspond to the surrounding of the up-
welling region (U), the ribbon (R) and the plumes region (P).
The multiplicity of apparently discrete ribs with high mean
Pearson correlation in the plume region arises due to the dis-
crete sampling of the considered nutrient concentrations in
time in combination with the imposed periodicity of the flow.

physical flow in the complex hydrodynamical system.
Specifically, there are several distinct spatial domains as-
sociated with different transport regimes, primarily in-
cluding the area of and around the upwelling region (U)
in the upper left part of the study area, the central plume
region (P) and the upper laminar transport ribbon (R),
see Fig. 4.

A. Flow network construction

Different from the previous example, we follow the
“classical” approach of empirically estimating pairwise
correlation coefficients between the simulated nutrient
time series at each grid point as the basis for flow network
construction. In order to eliminate spurious correlations
due to spatial auto-correlations and to mimic the effect
of observational noise in real-world geophysical data sets,
standard Gaussian white noise εm(t) � x̂m(t) with zero
mean and unit variance is first added to the original time
series x̂m(t):

xm(t) = x̂m(t) + εm(t). (22)

Notably, this stochastic perturbation is about 1-2 orders
of magnitude smaller than the typical range of nutrient
concentrations (cf. Fig. 3). The resulting noisy time se-
ries xm(t) are normalized to obtain records with zero
mean and unit variance at each grid point.

Subsequently, we use the thus obtained data set for
constructing a flow network with N = 6, 161 vertices.
Here, each vertex again represents a grid point and its

associated time series of normalized nutrient concentra-
tions. Statistical similarity between the time-evolution
at two grid points m and n is measured by means of the
lagged Pearson cross-correlation

Cmn = max
τ∈[−TC ,0[

〈xm(t)xn(t− τ)〉. (23)

Although it does not account for nonlinear interdepen-
dencies between time series, Pearson correlation was cho-
sen here because of its lower computational costs (and
higher robustness of estimates from short time series) in
comparison with potential alternative measures. More-
over, Pearson correlations are most commonly utilized
in current studies on climate networks. However, in
the example studied here, the obtained results do not
change markedly when using other similarity measures
like Spearman’s Rho or Kendall’s Tau (not shown). The
choice of a small negative time lag τ makes the resulting
network directed and ensures the correct edge direction.

The above description of our example setting high-
lights three important differences in comparison with the
first model system studied in Section III: (i) We have to
cope with a non-stationary (more specifically, periodic)
velocity field rather than a stationary one. (ii) The over-
all complexity of the system is larger. (iii) We study cor-
relations reflecting the non-trivial deterministic dynamics
of a scalar variable instead of such between exclusively
stochastic fluctuations, which are relatively weak in the
second example due to the low magnitude of the imposed
noise. As a fourth distinctive difference, in the following,
we consider an unweighted network representation. For
this purpose, we select an α-percentile of the empirical
distribution of all non-diagonal elements Cmn (m 6= n)
of C, denoted as C∗, and set

amn = Θ(Cmn − C∗)− δmn, (24)

where Θ(·) denotes the Heaviside function and δmn is
again Kronecker’s delta. A = (amn) represents the ad-
jacency matrix of the resulting flow network, capturing
the “statistical backbone” of the underlying velocity field
based on the scalar observables xm. A corresponding
thresholded correlation approach is widely used for con-
structing functional networks from spatio-temporal data
sets in a variety of disciplines ranging from climatology10

over neurosciences46 to economics47.
Figure 5 shows the obtained distribution of lagged

maximum correlation values. It can be recognized that
this distribution has marked positive skewness and a uni-
modal shape with a mode at C ≈ 0.2 that originates
from the majority of noisy and pairwise at most weakly
correlated – or in several cases even practically uncor-
related – time series. The latter are neglected in the
network construction by employing a correlation thresh-
old of C∗ = 0.95. Thereby, we derive a directed network
(since commonly Cmn 6= Cnm) with an edge density of
ρ = K/N(N − 1) = 0.0036 (implying that C∗ corre-
sponds to the 99.64% percentile of the empirical distri-
bution of all pairwise correlation values). Clearly, the
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FIG. 5. Empirical distribution p(C) of correlation values for
the complex flow example. The solid line shows a kernel den-
sity estimate; the dashed line represents the minimum cor-
relation threshold of C∗ = 0.95 used for the flow network
construction.

absolute number of edges depends on the distribution of
correlation values Cmn and the specific threshold C∗. For
the observed right-tailed distribution of correlation val-
ues (Fig. 5), sufficiently high C∗ & 0.8 guarantee quali-
tatively robust flow network patterns.

B. Flow network characteristics

Even without the construction of a flow network, we
can already visually identify the previously mentioned
three distinct regions of interest (ROIs) from the spatial
patterns of mean correlations (Fig. 4). In the following,
we will further characterize the flow regimes within these
three regions by means of our network measures, thereby
interpreting the correlation structure underlying the flow
network more thoroughly. In addition to the resulting
spatial patterns of degree and local anisotropy, we also
employ three complementary topological flow network
characteristics widely used in complex network studies
across disciplines4:

• betweenness Bm, which measures the fraction of
shortest paths in the network that traverse a vertex
m,

• local clustering coefficient cm, giving the probabil-
ity of vertices connected with m to be mutually
connected among themselves, and

• mean edge length l̄m, quantifying the average spa-
tial distance covered by the edges starting at m.

In what follows, for the topological network characteris-
tics we will restrict ourselves to the discussion of undi-
rected network measures – despite the fact that the con-
structed flow network is directed. Specifically, we con-
sider each edge in the network to be bidirectional if it

is present in at least one direction. There are two rea-
sons for making the corresponding simplification: On the
one hand, there is no unique local clustering coefficient
for directed networks; instead, one has to distinguish be-
tween different motifs composed of three vertices48. On
the other hand, at least for the degrees we find a rather
large correlation between in-degree and out-degree fields
(r ≈ 0.82) indicating that both properties reveal at least
qualitatively similar information. Note that this is dis-
tinctively different for the anisotropy, where the values
of Routm for the directed and Rm for the undirected flow
network hardly show any statistically relevant correla-
tion. Therefore, we will specifically consider the out-
anisotropy as the geometric measure of choice. A more
detailed comparison between directed and undirected ge-
ometric characteristics will be a subject of future work.

For a concise overview, the main results of our analysis
are briefly summarized in Tab. I. This synthesis shows
that the three dynamical regions P, U and R exhibit
unique features when considering combinations of the se-
lected network measures. None of the measures alone is
sufficient for obtaining a classification of the correspond-
ing regions and associated transport regimes. In turn,
the latter task can only be achieved when the different
measures are combined.

ROI plumes upwelling ribbon

range in x(1) 2..6 1..3 1..5

range in x(2) −1..1 1..2 ≈ 2
mean edge length l̄m low very low high
degree km high moderate high
betweenness Bm various very high very high
clustering coefficient cm high moderate moderate
out-anisotropy Rout

m various moderate high

TABLE I. Synthesis of typical ranges of local network mea-
sures inside the three distinct regions plumes (P), upwelling
(U) and ribbon (R) of the flow network constructed from nu-
trient concentrations. In order to support the visual analysis
of spatial patterns of network characteristics in the different
ROIs (Fig. 6), a classification is provided in qualitative terms
(very low, low, moderate, high, very high, as well as various in
case of more ambivalent values).

Our combined analysis of the spatial patterns displayed
by the different topological and geometric network prop-
erties (see Fig. 6) reveals a detailed picture of the inherent
correlation structure and its resulting signatures in the
flow network. In this context, note that for the applied
very high correlation threshold C∗, the flow network con-
tains a large number of isolated vertices outside the re-
gions U, P and R. In the following, we will only consider
those parts of the network that are actually connected
under the given setting.

The surrounding of the upwelling region (U) exhibits
intermediate values of degree, local clustering coefficient
as well as local anisotropy. In combination with very low
values of the mean edge length, the corresponding part
of the flow network is characterized by a rather localized
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FIG. 6. (Color online) Local properties of the complex flow network: (A) (logarithm of) degree, (B) (logarithm of) betweenness,
(C) local clustering coefficient, (D) mean edge length and (E) local out-anisotropy. For the interpretation of the measures as
well as their meaning in combination, see the main text. A concise overview is given in Tab. I.

connectivity with transport patterns of not strongly fo-
cused directionality. Accompanied by very high values of
betweenness centrality in this region, a local and short-
range transport regime is indicated. This interpretation
agrees with the high nutrient concentration being slowly
released from the upwelling region (indicated by the rect-
angular shape in Fig. 4) and fed into either the vortex
region in the wake of the island or the ribbon region be-
fore being advected out of the study area.

The central plumes region (P) shows low values of
mean edge lengths but very high degrees and high local

clustering coefficients, pointing to a dense and spatially
localized connectivity43. In combination with a broad
range of betweenness and anisotropy values, this indi-
cates a relatively slow propagation of the nutrient con-
centration patterns. Areas of higher anisotropy along
the upstream border of the plumes (Fig. 6E) probably
reflect that there are hardly any strong correlations with
vertices that are even closer to the circular obstacle. In
turn, given the consistently low edge length (Fig. 6D),
a strong correlation with the other parts of the plume
in the successive time steps is plausible. A sole effect of



12

spatio-temporal autocorrelations can be practically ruled
out due to the consideration of possible time lags. More-
over, we observe low local anisotropy values in the region
between transport ribbon and plumes, which are exactly
those regions where the flow changes its direction sharply.
This observation matches well the corresponding results
for the more basic meandering flow pattern studied in
Section III. In a similar way, the lower anisotropy values
at the downstream end of the plume region probably re-
flect the fact that due to the periodicity of the flow, in
this region there exist strong correlations with vertices
in various different directions, but with possibly different
lags (note again that we did not consider lag-zero corre-
lations here, but explicitly allow for certain time delays).

Finally, the upper transport ribbon (R) is distin-
guished by a strong and long-ranging transport regime
of relatively laminar character. This is indicated by high
values of mean edge length and degree, as well as a strong
directionality, suggested by high anisotropy values and
very high values of betweenness. The local clustering co-
efficient in this region is bound to moderate values, which
supports the interpretation of a relatively small number
of interconnections with other parts of the flow and, thus,
a comparably straight connectivity pattern.

The classification of different transport regimes coin-
ciding with regions of vertices with distinguished prop-
erties is further underpinned by the joint probability
densities of pairs of network characteristics displayed in
Fig. 7A-D. For example, the plumes region (P) is rep-
resented by a group of many vertices with high degree
and a broad range of betweenness values (Fig. 7C). At
the same time, this group exhibits a broad range of edge
anisotropy values (Fig. 7A) and relatively low values of
mean edge length (Fig. 7D). In a similar way, the two
other ROIs are associated with different groups of ver-
tices visible in Fig. 7.

In summary, by combining the different structural and
geometric aspects, the dynamical features of the system
encoded in the correlation structure can be recovered.
During the analysis, edge anisotropy contributed a so far
missing aspect to the identification and differentiation
of the distinct regions and helped to point out different
dynamical regimes of transport in these regions.

V. CONCLUSIONS AND OUTLOOK

Complex networks embedded in some physical space
are often only partly described by their topological char-
acteristics. Specifically, it is known that many classical
network properties (focusing exclusively on the mutual
linkage between vertices) are strongly predetermined by
the spatial positions of vertices and edges9,19. Examples
for this phenomenon include climate networks43,49 and
brain networks9. Taking this additional information into
account, a more holistic picture of the system’s structural
organization can be drawn.

In the context of geometric network properties, pre-

vious attention has mostly focused on the edge length
distributions and “trend” (edge orientation) entropies,
the latter being exclusively used in the field of road net-
work analysis so far22–24. Beyond the latter concepts, the
present work has introduced a new measure for quantify-
ing the anisotropy of edges adjacent to a given vertex in
a spatial network. The proposed approach can be gen-
erally applied to characterizing the spatial structure of
networks in a variety of fields. One prominent potential
application are road networks7,8 or, more generally, in-
frastructures, where cost-optimization typically calls for
explicit consideration of spatial constraints when build-
ing the network6,28.

In the present work, we have restricted our atten-
tion to flow networks embedded in a two-dimensional
Euclidean space with Cartesian coordinates. Notably,
there exist also numerous examples of spatial networks
naturally having a three-dimensional structure, includ-
ing network representations of the Earth’s atmosphere50,
ocean currents51, the human brain9, intracellular trans-
port or technical flow systems52. The framework pro-
posed here is general enough to be directly applicable to
such networks as well. Moreover, in the case of non-
Euclidean geometries53, one can extend the local and
global anisotropy characteristics defined in this work by
utilizing concepts from differential geometry, i.e., incor-
porating the curvature tensor of the respective metric
space.

By applying the novel concept of local anisotropy to
two correlation-based flow networks constructed in dif-
ferent ways, this paper has contributed to the ongoing
development of a new correspondence principle for the in-
vestigation of spatially embedded networks representing
dynamical systems. In combination with classical topo-
logical network characteristics like vertex degree, the lo-
cal anisotropy facilitates the identification of macroscopic
regions that exhibit directed flow and, hence, transport.
We have demonstrated the potential usefulness of our
approach for two physically well-understood prototypi-
cal model flows of different size and complexity.

One main potential field of application of correlation-
based (functional) flow networks as studied here is quali-
tatively deducing information about the hard to observe
velocity field of geophysical flows based on similarity pat-
terns of more directly observable scalar variables like tem-
perature, sea-surface salinity or nutrient or phytoplank-
ton concentrations, where large-scale data sets have re-
cently become available from extensive remote sensing
campaigns. Although this approach does not allow for
a detailed quantitative reconstruction of the flow itself,
by jointly assessing conceptually different topological and
geometric properties of flow networks, relevant flow struc-
tures can be identified and possibly attributed. Specifi-
cally, different domains of the flow (e.g., advection versus
diffusion-dominated areas) are characterized by different
combinations of values of these network measures. This
aspect becomes especially important when investigating
less well-understood systems and phenomena, where the
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FIG. 7. (Color online) Pairwise joint probability distributions of selected network measures in the complex flow network. Colors
again indicate the frequency of combinations of the values of the different measures.

detailed physical description and understanding is still
subject of ongoing research. In this spirit, our results may
provide a basis for gaining a better understanding of the
spatio-temporal organization of a broad variety of com-
plex systems, including possible applications to climate,
human neuro-physiology or transportation systems.

We emphasize that the consideration of complemen-
tary aspects for exploring unknown phenomena in some
data-driven way commonly provides a more detailed pic-
ture than focusing on individual measures. Notably, this
statement is supported by other recent studies on flow
networks20,25, where no unique correspondence between
the values of commonly studied topological network mea-
sures like degree or betweenness and the underlying flow
structures could be found.

One aspect neglected by the correlation-based ap-
proach followed in this as well as many other recent
contributions to this field is that the consideration of
dynamical similarities disregards available more detailed
information on the temporary dynamics, which would
be particularly relevant in case of non-stationary flows
commonly observed in geophysical systems like the at-
mosphere and oceans54 or in neuroscience. More detailed
studies of the latter cases call for alternative approaches
such as a time-resolved analysis43 or coarse-graining the
dynamics and studying it within some Markovian frame-
work, where networks are constructed based on transition
probabilities between discrete “states”55. A detailed ex-

ploration of the latter type of approach will be subject
of future research.
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N. Marwan, and J. Kurth. Correlation networks from flows. The
case of forced and time-dependent advection-diffusion dynamics.
PLoS ONE, subm.

21A. P. Masucci, D. Smith, A. Crooks, and M. Batty. Random
planar graphs and the london street network. European Physical
Journal B, 71(2):259–271, 2009.

22A. Gudmundsson and N. Mohajeri. Entropy and order in urban
street networks. Scientific Reports, 3:3324, 2013.

23N. Mohajeri, J.R. French, and A. Gudmundsson. Entropy Mea-
sures of Street-Network Dispersion: Analysis of Coastal Cities in
Brazil and Britain. Entropy, 15(9):3340–3360, 2013.

24N. Mohajeri and A. Gudmundsson. The evolution and complexity
of urban street networks. Geographical Analysis, 46(4):345–367,
2014.

25N. Molkenthin, K. Rehfeld, N. Marwan, and J. Kurths. Networks
from Flows – From Dynamics to Topology. Scientific Reports,
4:4119, 2014.

26E. A. Treml, P. N. Halpin, D. L. Urban, and L. F. Pratson.
Modeling population connectivity by ocean currents, a graph-
theoretic approach for marine conservation. Landscape Ecology,
23(1):19–36, 2008.

27V. Rossi, E. Ser-Giacomi, C. López, and E. Hernández-Garćıa.
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